Influence of substrate orientation on exciton fine structure splitting of InAs/InP nanowire quantum dots

نویسنده

  • Michał Zieliński
چکیده

: In this paper, we use an atomistic approach to investigate strain distributions, single particle and many body electronic properties of InAs/InP nanowire quantum dots with substrate orientation varying from [111] to high-index [119], and compared with [001] case. We show that single particle gap for high-index [11k] substrates is increased with respect to [111] and [001] cases, and oscillates with the substrate index due to faceting effects. Surprisingly, the overall shell-like structure of single particle states is preserved even for highly facetted, high-index substrates. On the contrary, we demonstrate that besides two limiting high-symmetry cases, [001] and [111], the bright exciton splitting varies strongly with substrate orientation. For [112]-oriented substrate, the fine structure splitting reaches maximum due to crystal lattice anisotropy despite fully cylindrical isotropic shape of nanowire quantum dot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots

By the application of an in-plane magnetic field, we demonstrate control of the fine structure polarisation splitting of the exciton emission lines in individual InAs quantum dots. The selection of quantum dots with certain barrier composition and confinement energies is found to determine the magnetic field dependent increase or decrease of the separation of the bright exciton emission lines, ...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Wavelength and polarization variations of InAs/GaAs quantum dots emission at liquid Helium temperature via microphotoluminescence spectroscopy

In this paper, we investigate variation of the wavelength, intensity and polarization of the self-assembled InAs/GaAs quantum dots emission by microphotoluminescence spectroscopy at the liquid helium temperature. The microcavity wafer sample is grown by molecular beam epitaxy (MBE) and chemically etched into the micropillar structure (with elliptical cross section - long and short axis 2µm×1.5µ...

متن کامل

Fine structure in the excitonic emission of InAs/GaAs quantum dot molecules

The exciton fine structure in self-assembled coupled quantum dots with barriers of varying widths is studied in detail. For narrow barriers we find doublet splittings of the molecule ground state exciton in magnetic field, while for wide barriers in some cases a multiplet of emission lines is observed. Pronounced anticrossings occur in the field dispersion of such a multiplet with details depen...

متن کامل

Carrier relaxation dynamics in InAs/InP quantum dots

The electronic properties of InAs/InP(113)B double-cap quantum dots (QDs) emitting around 1.55 μm are investigated. The carrier dynamics in QDs is studied by non-resonant timeresolved photoluminescence (tr-PL) experiments. This analysis reveals the QD electronic structure and the transient filling of the confined QD levels. Under low excitation densities, the spontaneous exciton lifetime is est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012